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transverse plasma flow, ponderomotively (or thermally)
c reated density depressions form d o w n s t ream f rom the
laser beam’s high-intensity regions. Light refracted into
the lowered density is thus deflected in the direction of
the flow. We use the numerical model F3D to quantify
these mechanisms.6 To illustrate the physics, a highly
simplified, steady-state model is used,

(1a)

. (1b)

Equation (1a) describes the light wave amplitude ψ
(vector potential scaled to its mean value) in the parax-
ial approximation, scattered by the fractional density
perturbations δn. Equation (1b) gives the steady-state
density response to the ponderomotive force. In these
equations, the light is propagating in the ez d i re c t i o n ,
and the density fluctuations propagate only in the
transverse direction. Here, k0 is the vacuum wave num-
b e r, n0 is the unperturbed plasma density, ωp e is the
e l e c t ron plasma fre q u e n c y, and c is the speed of light.
A l s o , M ≡ u / Cs is the Mach number of the flow u in the
x d i rection, with Cs t h e sound speed, κ the spatial
damping rate of ion acoustic waves, v0 t h e q u i v e r
velocity of an electron in the mean light wave field, and
ve the electron thermal velocity. The density re s p o n s e
calculated by F3D in steady state,6 when thermal eff e c t s
a re neglected, is that given by Eq. (1b). In highly colli-
sional plasmas, thermal effects supplement the pon-
d e romotive potential, thereby increasing filamentation,
and might be expected to similarly increase deflection.
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Introduction
Recent experiments1 , 2 conducted at Lawre n c e

L i v e r m o re National Laboratory (LLNL) using the
Nova laser show anomalous deflections of the laser
beam in the plasma. In gas-filled hohlraum experi-
m e n t s ,1 the laser spot on the hohlraum wall is
100–150 µm closer to the laser entrance hole (LEH)
than in empty hohlraum experiments. This corre-
sponds to a beam deflection of ro u g h l y 6° if the
deflection occurs near the LEH. In a series of explod-
ing foil experiments,2 i n t e n s i t y-dependent deflection
of a transmitted probe beam is observed.

Simulations by the hydro code LASNEX,1,3 which
accurately model empty hohlraum experiments, do
not show beam deflection in gas-filled hohlraums.
Neither whole-beam refraction nor differential laser
absorption accounts for the experimental results
(because the laser makes an angle of 50° with the
hohlraum axis, the path length of the innermost por-
tion of the laser beam is longer than that of the outer-
most portion). In this article, we show that, in the
hohlraum plasma, effects of flow transverse to the
laser propagation direction on (1) filamentation and (2)
forward Brillouin scatter (FBS) can account for this
anomalous deflection.

Model for Transverse-Flow–
Induced Beam Deflection

Solution of the steady-state filamentation dispersion
relation shows that filaments grow in a direction tilted
d o w n s t ream to the initial beam dire c t i o n .4 This mecha-
nism was recently pro p o s e d5 as a cause of beam deflec-
tion in the aforementioned hohlraum experiments.

In this article, we examine a group of related mech-
anisms for laser beam deflection. In the presence of a



Equations of motions for the beam centroid 
and width can be derived by taking intensity-
weighted moments of Eq. (1a). Defining

etc., we obtain

(2a)

(2b)

Equation (2b) is analogous to Eq. (11) of Ref. [7].
Similar equations have also been derived in Refs. [8]
and [9].

In Eq. (2a), the transverse density gradient refracts
the light toward regions of lower electron density. In
Eq. (2b), the beam width is determined by the competi-
tion between diffraction [first term on right-hand side
(RHS) of Eq. (2b)] and self-focusing [second term on
RHS of Eq. (2b)].

When the Fourier transform of Eq. (1b) is substi-
tuted into Eq. (2a),

(3)

w h e re we have defined the wave amplitude damping
d e c rement ≡ κ /k⊥. (Setting = constant appro x i-
mately re p resents Landau damping.) The y c o m p o n e n t
of the above equation yields 〈 ∂2y/∂z2〉 = 0, as the inte-
grand is an odd function of ky. In the absence of flow,
then, the beam is not deflected.

In the x direction, for subsonic flow (M < 1), only
the even portion of the integrand survives, and the

κ κ 

      

∂2 x⊥
∂z2

= –
iωpe

2 v0
2

2k0
2c2ve

2

×
d2k⊥ ˜ ψ k⊥( ) 2 ˜ ψ –k⊥( ) 2

k⊥
2k⊥

kx
2 M2 – 1( ) – iκMk⊥kx – ky

2
,∫

      

∂2

∂z2 x⊥ – x⊥( )2 = 2

k0
2

× k⊥ – k⊥( )2
–

ωpe
2

c2
x⊥ – x⊥( ) ⋅ ∇⊥δn( )

 
 
 

  

 
 
 

  
 .

      

∂2

∂z2 x⊥ = –
ωpe

2

2k0
2c2 ∇⊥δn ,

x⊥ ≡ ψ *x⊥∫ ψd2x⊥ ,  k⊥ ≡ –i ψ *∇⊥∫ ψ d2x⊥

deflection can be seen to be an increasing function of
M, and to be proportional to the damping decrement.
The deflection (i.e., ∂2〈x〉/∂z2) is greatest for two-
dimensional (2D) perturbations with ky = 0, where the
denominator is smallest.

In a non-steady-state model, there would have been
an additional transient density response over a charac-
teristic time scale t = a/(1 – M)Cs, where a is the beam
width, even when κ = 0. This is most significant as 
M → 1, when the ion acoustic damping is weak.

With supersonic transverse flow (M > 1 ) , the integrand
in Eq. (3) has a resonant contribution where 

This is the matching condition for forward SBS,
where different k components of the beam are coupled
by ion acoustic waves Doppler shifted to zero fre-
quency. In 2D, the resonance occurs only at M = 1.

Substitution of the Fourier transform of δn as deter-
mined from Eq. (1b) into the second term on RHS of
Eq. (2b) shows that the self-focusing of the beam is
proportional to

This expression is always positive definite for M<1,
and increases the self-focusing in the flow direction over
that experienced by the beam in the nonflow dire c t i o n .

Numerical Simulations of the
Ponderomotive Density
Response

We examined the density response of a transversely
flowing plasma to a legislated Gaussian laser wave
amplitude ψ = exp[– (x2 + y2) / 2σ2]. We compared the
linearized response obtained analytically from Eq. (1b)
(with time dependence retained, but with zero damp-
i n g )1 0 to the nonlinear response computed numerically
using the Eulerian, 3D hydrodynamics code NH3,11 i n
which the plasma is treated as a single, nondissipative,
nonconducting fluid. For example, when M = 1.2, a pon-
d e romotive potential that drives a maximum linearized
density response of δn ~ 25% has a corresponding non-
linear response approximately 20% smaller. However,
t h e re is only a 2.5% diff e rence between 〈 ∇⊥δnl i n〉 a n d
〈 ∇⊥δnn l〉, i.e., in the centroid deflection as governed by
Eq. (2a). Since such large density perturbations are
reached only in very localized regions of plasma, we do
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not anticipate that the results presented here would be
modified by the inclusion of nonlinearity. For more
s t rongly driven systems, this may not be the case.1 2

2D Simulations of a Gaussian
Beam

Motivated by the above considerations, we per-
formed a series of 2D and 3D F3D simulations.6 T h e
plasma parameters chosen are characteristic of LASNEX
s i m u l a t i o n s1 , 3 of gas-filled hohlraums near the sonic
point in the transverse flow, where the plasma electro n
density is n = 0.1nc, nc being the critical density, and the
e l e c t ron temperature is Te = 3 keV. We initially modeled
a single hot spot of the Nova beam (a hot spot is a por-
tion of the beam that is more intense; this region of
higher intensity is caused by constructive interfere n c e
between coherent pieces of the beam). In these 2D simu-
lations, the incident laser amplitude is Gaussian with
peak intensity and beam width variance σ2 = a2, cor-
responding to an input wave field ψ = (x,z = 0) =
e x p ( –x2/ 2a2) .

Simulations in 2D with a constant transverse flow
and zero damping decrement (but with time depen-
dence retained) were performed where the laser inten-
sity and system length varied. The amount of beam
deflection increases approximately linearly with laser
intensity (for 1 × 1015 ≤ ≤ 6 × 1015 W/cm2) and sys-
tem length (for 0 ≤ L ≤ 1000λ0). By varying the width of
the Gaussian beam (2λ0 ≤ a ≤ 100λ0), we found that
maximum filamentation amplication and beam deflec-
tion occurs for a ≈ 10λ0, corresponding to the peak lin-
ear gain rate (without flow) [κfil = 0.125(v0/ve)2(n/nc)
for a– 1 = 0.5k0 (v0/ve) (n / nc)

1 / 2] .
LASNEX simulations1 , 3 of gas-filled hohlraums

indicate that the plasma flow transverse to the laser beam
is sheared, i.e., u ≈ u0(1 + z/Lv )e⊥, with Lv ≈ 500 µm, and
that the transverse flow profile has a sonic point on a
long shelf of plasma with density n = 0.1nc. The laser
p ropagation was simulated in the vicinity of the
transverse sonic point; i.e., M d e c reased linearly fro m
a value of 1.1 at z = 0 to a value of 0.5 at z = 1000λ0,
w h e re λ0 = 0.351 µm.  Figure 1 is a surface plot of the
laser intensity with = 6 × 1 015 W / c m2 and a = 10λ0
at time t = 90 ps. These values of peak intensity and
beam width mimic the peak intensity and transverse
size of laser hot spots 1 mm beyond best focus for an
unsmoothed Nova beam,1 3 i.e., near the LEH. The
entrance plane (z = 0) is at the top of the figure. In this
plane, the beam is centered in the middle of the box.
At z = 1000λ0, the beam is no longer centere d .
A p p roximately 70% of the beam energy is deflected

  I 

  I 

  I 

in the direction of the flow in the vicinity of the trans-
verse sonic point, at z = 150λ0, and the remainder of
the beam is undeflected and is also defocused by
d i ff r a c t i o n .

3D Simulations of an RPP Beam
The 2D simulation described above illustrates the

deflection of one hot spot. Near the focal plane, the
beam consists of many spots of varying power and
size. To model the laser beam more accurately, we per-
formed simulations in 3D with a model of the laser
beam at best focus when random phase plates (RPP)
are used.14 The RPP technique produces a large num-
ber of beamlets in the laser beam with random phases.
The superposition of these beamlets yields spikes
(from constructive interference) and depressions (from
destructive interference) in the intensity pattern, i.e.,
speckles. A speckle length is typically Ls ≡ 8f2λ0, where
f is the f number of the lens.

We simulated a piece of the RPP Nova beam near
peak intensity, where I0 = 3 × 1015 W/cm2 in f/4 focus-
ing geometry. All other plasma parameters were
unchanged, except the damping decrement, ≡ v/kCs
= 0.1. Figure 2 depicts the effect of transverse flow on
the hot spots of the laser beam. Plotted are contours of
laser intensity greater than or equal to 5I0. The laser

κ 
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FIGURE 1. A surface plot of the laser intensity of a 2D Gaussian
beam at time t =90ps for = 6 × 1015 W/cm2, n = 0.1nc, Te = 3 keV, 

= 0, and transverse flow scale length L = 500 µm. The initial beam
width is a = 10λ0, where λ0 = 0.351 µm.  Approximately 70% of the
beam deflects 9°, and self-focuses as well. The remainder of the
beam not captured in the filament travels undeflected through the
system. (08-00-0697-1094pb01)

  I 



beam enters from the left side of the simulation box,
w h e re the downwardly directed transverse flow
d e c reases linearly from M = 1.15 to M = 0.85 on the
right side of the simulation box, with the transverse
sonic point located at the center. In contrast to 2D
simulations, where deflection is localized at the sonic
point, in 3D, beam deflection occurs throughout the
supersonic region, where internal FBS between differ-
ent k components of the beam takes place.

In the subsonic region, the hot spots become wider,
indicating that the area of the beam at intensities
greater than or equal to 5I0 has increased. The beam
hot spots are undergoing self-focusing in addition to
deflection. The calculated centroid of the laser beam
has deflected by 6° at the exit plane, roughly 1/3 of the
deflection of the intense parts of the beam (∼18°)
shown in Figure 2.

A series of 3D RPP simulations was also performed at
the above parameters to determine the Mach number
scaling. The constant (over the simulation system) trans-
verse flow was increased from M = 0 to M = 1 in succes-
sive simulations, and we found that the deflection
a p p roximately scales as M /(2 – M2)2. This is in agre e-
ment with Eq. (3), where, for a circular beam (kx ≈ ky), t h e
calculated deflection is proportional to M /(2 – M2)2.

We also performed 3D simulations incorporating
smoothing by spectral dispersion (SSD),15 which
causes the speckles to move around and appear or dis-
appear as a function of time. (At any given instant, an
SSD beam has a sinusoidal variation in frequency with
transverse wave number.) SSD is most effective when

there is at least one complete color cycle of the sinu-
soid. Application of 3 Å of bandwidth to a laser beam
dispersed by a grating that provides 1.2 color cycles
reduces deflection of the previously described RPP
beam from 6° to roughly 2°. Figure 3 is a plot of the hot
spots of the laser beam of Figure 2 when SSD with 3 Å
of bandwidth is applied.

However, with sufficient bandwidth and dispersion,
SSD can induce oscillatory (in time) beam deflection,
even in the absence of flow. (In a time-averaged sense,
i.e., when averaged over many SSD cycles, this deflec-
tion approaches zero.) Those k components of the
beam that instantaneously have higher frequencies
transfer energy to others at lower frequencies when the
frequency and wave vector matching conditions for
FBS are satisfied. This is the same physical mechanism
believed to be responsible for the energy transfer
between separate beams of different frequency,
observed in experiments at LLNL.16,17

Figure 3 depicts the laser beam when the down-
stream edge of the beam is red, i.e., at the time when
SSD is adding its maximum contribution to the beam
deflection. Comparing Figure 3 to Figure 2, we see
clearly that the amount of energy greater than or equal
to 5I0 is reduced for the SSD beam (i.e., self-focusing is
reduced) and that the amount of deflection of the hot
spots is greatly reduced as well (∼18° in Figure 2 vs ∼5°
in Figure 3). In simulations without flow, but with 3 Å
of bandwidth applied to an SSD beam, the beam 
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FIGURE 2. A plot of the hot spots of a 3D, RPP laser beam at time
t = 9 0 ps for 0 = 3 × 1 015 W / c m2, n /nc = 0.1, Te = 3 keV, = 0.1, and
transverse flow scale length Lv =500 µm. The speckle length is Ls =
128λ0, where λ0 = 0.351 µm.  Those portions of the laser beam at
intensities greater than or equal to 5I0 are shown. The hot spots of
the laser beam undergo deflection of 18°; the calculated centroid of
the beam deflects 6°. In the subsonic region, the hot spots also show
evidence of self-focusing. (08-00-0697-1095pb01)

κ   I 

FI G U R E 3. A plot of the hot spots of a 3D, RPP laser beam with
SSD and 3 Å of bandwidth at time t = 9 0 ps f o r 0 = 3 × 1 01 5

W / c m2, n / nc = 0.1, Te = 3 keV, = 0.1, and transverse flow scale
length Lv = 500 µm. The speckle length is Ls = 128λ0, where λ0 =
0.351 µm.  Those portions of the laser beam at intensities gre a t e r
than or equal to 5I0 a re shown. The centroid of the beam deflects
by 2° at the exit plane, and the hot spots are deflected about 5°.
T h e re is less deflection and self-focusing than in Figure 2 .
( 0 8 - 0 0 - 0 6 9 7 - 1 0 9 6 p b 0 1 )
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κ 



centroid deflection (which is caused by the SSD itself)
is roughly 2° at the time when the downstream edge of
the beam is red (time of maximum deflection). Thus, in
Figure 3, the deflection is primarily caused by the SSD
itself, and not by the flow.

In a 2D, steady-state model, the linearized density
response diverges as M → 1. This divergence is miti-
gated by inclusion of 3D effects and/or ion wave
damping when κa > 1 – M, where a is the beam width.
In the absence of these effects, fluid nonlinearity limits
the resonance when v0/ve > 1 – M.18 Nonlinear hydro-
dynamic effects become more significant at higher
intensities than considered here, e.g., when δn → 1. In
the very near future, this problem will be examined at
higher intensity, where the nonlinear aspects of this
problem are important, via the incorporation of the
nonlinear hydrodynamics package NH3 into F3D.

Summary
Recent experiments in gas-filled hohlraums suggest

that laser beams refract more than calculated by the
hydrocode LASNEX.  We show, from theoretical argu-
ments and three-dimensional simulations with F3D,
that transverse plasma flow causes a deflection in the
inferred direction of the appropriate magnitude. The
physical mechanisms involve filamentation and for-
ward SBS. In each case, the density depressions created
by the laser’s ponderomotive force are swept down-
stream by the transverse flow. The displaced depres-
sions then refract the laser energy in the direction of
the flow.
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